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SUMMARY 

Acceleration waves in one-dimensional plastic materials are investigated by the theory of singular points. The 
unloading wave propagates with a constant velocity, while the propagation velocity of the loading wave is less 
than that of the unloading wave and the velocity depends upon the stress and the work-hardening. The 
growth and decay of the amplitude of the waves are also analyzed. The unloading wave propagates with a 
constant amplitude. The amplitude of the loading wave may grow or decay and the choice between the two 
depends upon the stress, the work-hardening and whether the wave is compressive or expansive, In the case of 
growth the amplitude tends to infinity in finite time, that is, the blow time, and the acceleration wave 
coalesces into a shock wave. In the case of decay the amplitude tends to zero as the time tends to infinity. 
The propagation velocity, the blow time and the blow distance are calculated and plotted against the strain. 

1. Introduction 

Wave propagation in a material depends upon the character of the material and we can estimate 

its mechanical properties by means of the analysis of the behavior of the wave. 

Until now there has been done a lot of theoretical work on wave propagation in any type of 

material. Usually a wave is defined to be a singular surface and an acceleration wave is defined to 

be a surface across wlaich a jump in the acceleration of the material particle occurs. For singular 

surfaces we refer to, e.g., Truesdell and Toupin [ 1]. 

Acceleration waves in hypo-elastic materials were analyzed by Bernstein [2], Hill [3], Trues- 

dell [4] and Varley and Dunwoody [5], and those in rate-type plastic materials were studied by 

the author [6] - [8]. For the reason that the analysis is simple without much loss of generality, 

waves in one-dimensional materials have been investigated frequently. For a one,dimensional 

simple material, we refer to [9]. 

In the preceding article [10] we studied a one-dimensional plastic material with general 
work-hardening and investigated its loading and unloading behavior. In this paper we shall 

study acceleration waves in such a material. The propagation velocities are obtained and the 

growth and the decay of the waves are analyzed for the unloading and the loading wave. 
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2. F i e l d  e q u a t i o n s  and the constitutive equations 

The one-dimensional motion of a material particle is given by 

x = X (X, t), (2.1) 

where X and x are, respectively, the coordinates of a material particle in the reference and the 

current configuration and t is the time. Every one-dimensional material must satisfy the equa- 

tion o f  motion 

OT 
+ PR b = PR 5i, (2.2) 

0X 

where T is the stress, 2 is the acceleration, PR is the mass density, b is the body force and PR 
and b refer to the reference configuration. The conservation law of  mass is expressed as 

+ P ~x  = 0. (2.3) 

The deformation gradient and the strain are defined, respectively, by 

F= a___XX e = F -  1 (2.4) 
~X '  

The constitutive equations of a plastic material with general work-hardening were 

proposed in the preceding paper [10]. They are 

(7) _ (7,  (2.5) 
de de de 

where the tangential moduli are defined by 

K = X, • = 0, • = 0, (2.6) 

in the unloading state, and by 

~2 ~ eT'2 (2.7) 
K = X X M ( c 0 2  ' <b = --~-, ~ = X M(ct)  - - - ' - - - - - ~  ' 

in the loading state; 

= r - / ~  (2.8) 

is the translated stress, a and/3 are intemal state variables and called, respectively, the parameter 
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o f  the isotropic work-hardening and the translation,M(a) is a material function of a, and ~ and 
c are positive material constants. When the rate of work done by the stress is given by 

w = T F '  (2.9) 

the unloading and the loading state are defined, respectively, by the conditions 

w < 0, w _->0. (2.10) 

The yield condition is defined by the vanishing of the translated stress modulus with 
respect to the strain and it is given by 

T= +- X M(a). (2.11) 

The yield value of the translated stress was discussed in the preceding article and its second- 
order approximation has the value 

l__ 

T'= + XM(u) (1 - M ( a )  M(a) ' )  = (2.12) 

Now we assume that 

M(a) > O, 

0_-< c _-< 1. 

M(a)'  ~_ 0, (2.13) 

(2.14) 

The inequality (2.13)2 denotes the work-hardening. If c > 1, the stress can not yield although 

the translated stress does, so we imposed restriction (2.14) on e. 

3. Singular points, compatibility conditions and acceleration waves 

In a one-dimensional space a singular point W is expressed by 

X = Z(t), x = z(t), 

where the functions Z and z are related by the motion (2.1) such that 

z(t) = x(Z(t), t). 

The propagation velocity of the point W is given by 

V = 2(0 ,  u = ~(t), 

(3.1) 

(3.2) 

(3.3) 
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which refer to the reference and the current configuration, respectively, and from k = OX/Ot + 
(Ox/3X)Z we have 

u - 2 = F U, (3.4) 

which denotes the velocity of  W relative to the material particle. Henceforth we assume 

U > 0. (3.5) 

A quantity ~b and its derivatives are assumed to be continuous everywhere except at W, 
but they may have jumps across W. The jump of  ff is defined by 

[ ~O ] = ~ - - ff +,  ( 3 . 6 )  

where if-and ~+ are the limiting values from the negative and the positive side of  W, respectively. 
The jumps of  a quantity and of  its derivatives can not attain arbitrary values but  they must 

satisfy the compatibility conditions 

6A (3.7) 

8B (3.8) 

6B ~UB + --82A (3.9) 
6t 5t ~t 2 ' 

= ba c -  2 u  

where 

A = [~], B = [ 3 ~ ] ,  C=  [32 ~Ol[OX2 j (3.10) 

and the displacement derivative 6~/6t of  any quantity 4~ means the time rate of  ~ measured by 
an observer moving with the singular point. For these conditions see, e.g., Chen [11]. 

An acceleration wave in a plastic material having the constitutive equations (2.5) - (2.7) is 
defined to be a singular point, across which x, 2, e, T, ~ and/3 are continuous but  2 has a jump 

a = [~], (3.11) 

which is called the amplitude of  the wave. 
From the above definition, 

[x] = [2] = [e I = [T] = [,q = [N = 0 (3.12) 

and a 4= 0. Substituting x into ~k in (3.8) and (3.9), we have 
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a a[_~_x] a [el = -  ~ ,  -- U-- q .  

The conservation law of mass (2.3) is expressed as 

b = - p - f f  -, p F :  p R. 

Then from (3.12)2 and [p] = 0 we have 

pa  
[P] -  F U "  

23 

(3.13) 

(3.14) 

(3.15) 

The deformation is assumed to be non-singular, so F > 0. From the assumption (3.5), the in- 
equality O > 0 and the definition of a jump (3.6) we can say that, when a > 0, then [~] > 0 and 
the singular point represents a compressive wave; when a < 0, then [t~] < 0 and it represents 
an expansive wave. 

4. Propagation velocities 

The equation of motion (2.2) holds except for the singular point. Then we can take the jump 
of it across W and we have 

a[_~_] = PR a, (4.1) 

where thle body force is assumed to be continuous. The constitutive equations of the stress 
(2.5)1 can be written as 

(1 - c )T 2 } ae aT _ X ae aT X (4.2) 
o-2 a x '  a x  : a x  

in the unloading state and in the loading state, respectively. 
Now we assume that both regions ahead and behind of W are in the unloading state or in the 

loading state. For the former case the wave is called an unloading wave and for the latter case it 
is called a loading wave. Then we have 

[ ~ ] =  X a aT ~ -  , [~-~]= {1 (1M~-c)~ ¢2 } ~-~a, X (4.3) 

where 

S -  -~ = S -  % T ~ (4.4) S_=~-, ~ / - -  
X 
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are non-dimensional quantities. Therefore, substituting (4.3) into (4.1), we have the propaga- 

tion velocity of  the unloading wave 

().) U E = 2, (4.5) 

and that of  the loading wave 

U = U  E {1 ( 1 =  c )$2~  -~ M(a)  2 ~ . (4.6) 

For a material with c = 1 the loading wave propagates with U E. 

In the yield state the translated stress has the value (2.12). Then the loading wave propagates 

with the velocity 

_1 

U =  U E { c + (1 - c)M(oOM(oO'} 2 (4.7) 

in the yield state. For a material without translational work-hardening it is 

k 

U = U E (M(o 0 M(a)  , )2  (4.8) 

For a material without isotropic work-hardening it is 

1 

U = U E c . (4.9) 

For a perfectly plastic material with a = c = O, the loading wave can not propagate in the yield 

state. 
In the preceding article [10] we calculated stress-strain relations of  a material which has 

the material function 

M(a) = Mo (1 + a a) n , (4.10) 

where the material was loaded from the initial state 

T'= 0, a = 0, ~ : 0. (4.11) 

Figure 1 shows the non-dimensional propagation velocities U/U E of  the loading waves 
against the strain in the loading states which were presented in Figure 2 o f  [10]. The velocities 
decrease when the states approach the yield state and tend to the values (4.7) - (4.9) which are 
shown by the black circles plotted at e = 4 x 10 -3 . For materials which have a small value of  

the material constant c, the loading wave propagates with small velocity, and for the material 
with c = 1 the loading wave propagates with U E at any state. 
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5. Growth and decay 

Let us study the growth and decay of the amplitude of the acceleration waves. Differentiating 
the equation of motion (2.2) with time we have 

aT h 3?, (5.1) a--X- + PR = PR 

:D 

Q5 

Mo =~'~3 x l 0-3 

a =0 

0 

! 

h 
2 

C=1 

0.5 

0.1 

m 

0.02 

e x lO 3 

(a) 

0.5 

I i 

a = 3 x 10 -4 

n = 0 . 5  

c=1 

0.5 

0.1 

0.02 

o 

2 3 4 
e x 103 

(b) 

Figure 1. Non-dimensional propagation velocities of the loading wave against the strain in the loading state. 
Black circles denote the limit velocities at the yield state. 
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which holds except for W. Then we have 

under the condition [/;] = 0. 
Now we assume that the material in the region ahead of the wave is in the homogeneous 

equilibrium state. So the propagation velocity is constant and 8U/St = 0. Putting ~ =~ in the 
compatibility condition (3.9) and using (3.13)1, we have 

[ '¥ ]=U= aI-a-X]+28a'fit (5.3) 

From the constitutive equation for the stress we have 

3J ~ a~ { a ( K + ~ )  ~._~Ka } 3e 
a X -  ( K + * )  ~-~ + K aT-- + ~ e --3X' (5.4) 

where K, qb and • are given by (2.6) and (2.7). Then we have 

a[-~-] = (K + q0 aI-~-~] --if31{ a(K+eff) aK) 2 j  K + ,I, , 
a?' 

(5.5) 

where (3.12), (3.13) and [d ae/aX] = [d] [ae/aX] were used. 
Substituting (5.3) and (5.5) into the relation (5.2), and referring to the propagation veloci- 

ties (4.5) and (4.6), we have the evolutional equation of the amplitude 

6._a.a = p a2 ' (5.6) 
fit 

where, 

F--O, (5.7a) 

1 - c N(a) 2 } 

P= UE M(a) 2 { 1 -  M(a): J 
(1 - c)S'2~, { ' ( 5 . 7b )  

for the unloading wave and for the loading wave, respectively, where M(a)' = aM(a)/3a and 

N(R) = 
M(~) 

(1 + M(a)M(oO') ~ 
(5.8) 
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It is easy to solve equation (5.6), and we have 

a(t) = a(0) (5.9) 

for the unloading wave and 

a(t) - a(O) (5.10) 
1 - a(0) V t 

for the loading wave, where a(0) is the initial amplitude at t = 0. Then we can say that the un- 
loading wave propagates with a constant amplitude while the loading wave may grow or decay. 

If a(0) F > 0, then growth occurs and at the Finite time 

1 (5.11) too- a(O) P 

the amplitude of the acceleration wave tends to infinity and it coalesces into a shock wave. The 
time (5.11) is called the blow time, which can be expressed as 

M(a) 2 {1 (1 - c ) f f 2  } ~ 
UE M(a) 2 (5.12) 

too a(O) S 1 N(a) 2 

The blow distance, 

2M(a) 2 {1 (1 - c)S'2~ 
~ / ' ~  } (5.13) UE ~'~ , 

doo=Utoo-a(O)  S'{1 N ( a ) 2  } 

denotes the distance before the wave blows up. The blow time and the blow distance are in- 
versely proportional to the initial amplitude. 

If a(0) P < 0, the wave decreases monotonically to zero as time tends to infinity. 
From the yield translated stress (2.12), we may assume that 

1 

[ S'I --< M(a)(1 - g ( a ) M ( a ) ' )  ~ , (5.14) 

and then 

1 ~ 1  

1 ~ 1  

(1 - c ) S  2 ~ c +(1 -c)M(a)m(a)' >= O, 
M ( c 0  2 

~2 _> M(a)3/(0 0' -> 0. 
N ( a ) 2  - 
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Therefore Y has the same sign as S'. Then we can say that in the tension state, that is, T >  0, the 
compressive loading wave blows up while the expansive loading wave decreases; in the compres- 
sion state, that is, T <  0, the compressive loading wave decreases while the expansive loading 
wave blows up; and at T'= 0, the waves propagate with a constant amplitude. 

For the perfectly plastic material with a = c = 0 we have 

UE Mo 2 
$2 ]_~, (5.15) 

t°°-a(O) S 1 - - ~ o  f 

UE2 M°2 (5.16) 
a ~  = a(O) s 

Substituting the yield stress (2.12) into (5.12) and (5.13) we have the blow time and the 
blow distance at the yield state 

UE 1 {c + ( 1 -  c)M(a)M(oO'.} -~ 
t°°= a(O) M(a)m(a) '2 1 -M(a)M(a)'  ' (5.17) 

doo_ UE 2 1 C + (1 -- c)M(u)M(a)' (5.18) 
a(O) M(a)M(a) '2 (1-M(a)M(a) ' ) {  

They have usually very large values and for a material without isotropic work-hardening they 
are clearly infinite. For a perfectly plastic material the blow time is infinite but the blow 
distance tends to a constant value at the yield state, 

d - UE2 oo- a - ~  Mo. (5.19) 

Figure 2 and Figure 3 show, respectively, the non-dimensional blow time tooa(O)/U E and the 
non-dimensional blow distance dooa(O)/UE 2 against the strain in the loading state presented in 
Figure 2 of [10]. Clearly they are infinite at the stress-free state. The limiting blow distance 
(5.19) is marked by a black circle in Figure 3(a). The diagrams have minima between e = 4 x 102 
and e = 10 ~ , so we can say that the loading acceleration wave transforms into a shock wave in 
shortest time or distance when the material is loaded by nearly half of the yield stress. 

Let us estimate the practical values of the blow time and the blow distance. For a sinusoidal 
wave 

= -  4n2 A(0), (5.20) UE XEr ' a(0) = 7 -  

where X E is the wavelength of the unloading wave, T is the period and A(0) is the initial value of 
the amplitude of vibration of material particle. Then we have 
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Figure 2. Non-dimensional blow time against the strain in the loading state. 
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Figure 3. Non-dimensional blow distance against the strain in the loading state. The black circle denotes the 
limit value at the yield state. 
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UE XE 
a(0) 4 n 2 A ( 0  ) r ,  

UE 2 XE 

(5.21) 

a(0)  4rr 2 A(0)  
XE, (5 2 2 )  

which indicates that the blow time and the blow distance are, respectively, given (in units of  

period and wavelength) by the multiples o f  the values plot ted in Figs. 2 and 3 and Xz/{4rr 2 A(0)}. 
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